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Cyclobutylideneacetic esters have hitherto attracted little attention, their formation 

having been mostly incidental in a study of the mechanism of some molecular rearrangements. 
1 

We report a simple route to these functionalized four-membered rings, using the A1C13-induced 

reaction of ethyl 2,3-butadienoate (1) with alkenes. Our work complements earlier studies of - 

Lewis acid catalyzed cycloadditions of 2-propynoic esters to olefins. 
2-4 

As we had suggested4 

that the 2-propynoic ester-A1C13 complex behaves as a vinyl cation cum allenyl cation, 

formulated as iv, it was self-evident that a complexed allenic ester such as l-A1C13 had to be - - 

tested as an electrophilic reagent. This ester can be formulated as l+--+ ii (Scheme 1). - 

i ii - - 

//o+P3 
HC 3 c-c - &c=c’ O---AC$ 

'OR 'OR 
iii iv - 

Scheme 1. Modified vinyl cations ii and iv by A1C13-complexation of allenic ester (i_) and - - 
2-propynoic ester, respectively. 

In fact, the present letter was written when Snider reported his work on EtA1C12-catalyzed 

reactions of methyl 2,3-butadienoate with acyclic alkenes. 
5 

The cycloadducts shown in Table 1 have been obtained by the following procedure. Ethyl 2,3- 

butadienoate (1) (l-2 g, 9-18 mmol) is dissolved in dried benzene (25 ml). Commercial aluminum 

trichloride (Merck) (0.5 molar equivalent with respect to 1) is vigorously stirred into the _ 

solution over a period of 15 min and the alkene (2 molar equivalent with respect to allenic 

ester 1) or cyclopentadiene is added. The progress of the reaction is monitored by pouring - 
aliquots of the reaction solution into aqueous NaHC03/pentane, shaking the solution and 

examining the pentane phase by GC (SE 30 column). When the product peaks no longer increase 

+ Dedicated to the memory of Franz Sondheimer. 
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Table 1. Cyclobutylideneacetic Esters via AlCl3-Catalyzed Reaction of Ethyl 2,3_Butadienoate 

(1) with Alkenes. 

Alkene Cycloadducts E:Z Isolated 
Yield (%)fi 
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a Yields (not optimized) after Kugelrohr distillation. 
b 
- endo : exo ratio. -- 
2 In benzene the reaction takes 45 min at room temperature. In the absence of AlC13,refluxing 

is required. 
d 
- endo : exo ratio for cycloaddition in the absence of A1C13. -- 



relative to I_, the reaction mixture is poured into aqueous NaHC03/pentane with precipitation 

of aluminum hydroxide, and the product is extracted continuously with a rotary perforator. 

The organic phase is washed with water until neutral and dried (Na2S04). The solvent is 
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evaporated to leave an oil which is distilled in a Kugelrohr apparatus. 

Table 2. Spectroscopic and Other Data of Cycloadducts. 

Numbering of Carbon Atoms: 
0 
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-2a: 90 MHz 'H NMR (CDC13). 6 1.27 (t, J = 7 Hz, 3H), 1.3-1.8 (12H), 2.2-3.5 (m, 4H), 

q,J = 7 Hz, 2H), 5.6 (q, J = 2.5 Hz, IH). 13C NMR 6 170.3 (C=O), 166.6 (C-3), (CDC13) 

(C-2), 59.4 (OCH2), 48.0 d (C-4), 39.0 t (C-6), 36.7 d (C-5) 30.3, 29.9, 29.3, 26.4, 

25.8, 14.4 (CH3). IR (neat) 1715, 1672 cm-'. GC-MS (tR 14.8min): m/e = 222 (M+, 8%), -- 

, '77(26), 165(16), 149(26), '34(100), 126(12), 119(30), '11(21), 105(30), 91(50),88(g), 

79(50), 67(51), 55(30), 43(40). Calcd (C14H2202) C 75.63, H 9.99. Found C 75.66, H 9.79. 

(Z)-2a: 90 MHz 'H NMR (CDC13) 6 inter al. 5.52 (q, resolved after addition of shift 

reagent). GC-MS (tR 13.lmin): m/e = 222 (M+, 24%), 207(4), 193(26), 179(47), 165(34), 149(56), -- 

134(90), 126(48), '19(48), 11'(53), 107(54), 91(87), 79(97), 67(100), 55(70). 

(E)-3a: 90 MHz 'H NMR (CDC13). 6 1.26 (t, J = 7 Hz, 3H), 1.6-2.8 (IOH), 2.9-3.3 (m, 2H, 

bridgehead H's), 4.15 (q, J = 7 Hz, 2H), 5.6 (m, 3H). 13C NMR (CDCl,). 6 170.1 (C=O), '66.3 

(C-3), '30.4, 130.0, 111.5 d (C-2), 59.4 (OCH2), 48.6 d 'C-"l, 37.7 t (C-6), 35.6 d (C-5), 

30.7, 28.4, 26.0, 25.3, 14.5 (CH3). IR (neat) 1715, 1670 cm . GC-MS (tR 7.6min): m/e = 220 -- 

(M+, 4%), 205(2), 19'(14), '74(17), '47(31), 137(17), 131(36), 119(40), 111(17), 105(69), 91 

(100), 79(62), 67(38), 53(26). Calcd (C14H2002) C 76.33, H 9.15. Found C 76.44, H 9.18. 

(Z)-3a: GC-MS (tR 6.8min): m/e = 220 (M+, 5%), 207(4), 191(12), 174('0), 15'(12), 147(27), -- 

131(33),117(31), 105(66), 91('00), 79(69), 67(42), 53(36). 

(E)-4a: 90 MHz 'H NMR (CDC13). 6 1.28 (t, J = 7 Hz, 3H), 1.38-2.6 (m, 8H), 2.7-3.2 (m, 2H, 

bridgehead H's), 4.11 (q, J = 7 Hz, 2H), 5.6 (q, 3 = 2 Hz, IH). 13C NMR (CDC13) 6 169.4 (C=O), 

166.8 (C-3), '10.8 d (C-2), 59.6 (OCH2), 42.7 d (C-4), 39.2 t (C-6), 29.6, 28.8, 24.3, 22.5, 

21.7, 14.4 (CH3). IR (neat) 1715, 1627 cm-'. GC-MS (tR 6.lmin) f/e = 194 (M+, 39%), 179(17), 

165(48), 149(79), 133(54), 121(90), 105(68), 9'(100), 79(93), 67(64), 53(35). 

(Z)-4a: 90 MHz 'H NMR (CDC13) 6 inter al. 5.53 (9). GC-MS (tR 5.8min) _m/e = 194 (M+, 19%), 

'79(11),165(38), 15'(60), '49(37), 137(36), 133(62), '05(64), 91(85), 79(100), 67(8'), 55(52). 

(E)-5a: 90 MHz 'H NMR (CDC13) 6 1.07-1.41 (t, J = 7 Hz, 3H), 1.52-1.96 (m, 6H), 2.30-2.52 

(m, 4H)r3.96-4.30 (q, J = 7 Hz, 2H, OCH2), 5.43-5.63 (q, J = 2 Hz, IH). IR (neat) 1712, 

1672 cm-'. Calcd (CllH1602) C 73.3, H 8.95. Found C 73.42, H 9.05. 

(Z)-5a: 90 MHz 'H NMR (CDC13) 6 inter al. 5.43 (m, resolved after addition of shift - 
reagent). 

(E+Z)-5a: MS (RT): y/e = 180 (M+, 7'2%), 165(8), 152(100), '51(65), 137(25), 135(67), 134 

(38), '33:24), 124(48), 123(42), 119(18), 111(19), 108('8), '07(92), 106(40), '05(42), 93(25), 

92(26), 91(68), 79(98), 77(29), 67(4'), 66(12), 65(19). 

6a: 90 MHz 'H NMR (CDC13) 6 0.0 (s, 9H), 0.94 (d, J = 7 Hz, 2H), 1.26 (t, J = 7 Hz, 3H), 

2.2-4.5 (m, 5H), 4.11 (q, J = 7 Hz, 2H), 5.57 (m, IH). 13C NMR (CDC13 6 166.5 (C=O), '64.3 s 

(C-3), 112.3 d (C-2), 59.4 (OCH2), 42.7 t (C-4), 41.6 t (C-6), 28.1 d (C-5), 25.4 t (C-7), 
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14.3 (CH3), -1.27 (SiMe3). IR (CHC13) 1703, 1670 cm-'. Calcd (C12H2202Si) C 63.71, H 9.73. 

Found C 63.73, H 9.78. 

endo- + exo-7: 90 MHz 'H NMR (CDC13) 6 1.05-1.28 (2t, J = 7 Hz, 2CH3), 1.33-1.66 (m, -- -- 
2CH2), 2.72 (q, IH, endo-H), 3.1-3.3 (m, 4H, bridgehead H's), 3.3-3.44 (m, IH, S-H), 4.16- 

4.33 (2q, J = 7 Hz, 4H, 20CH2), 4.86-5.03 (dd, 4H, 2CH2=), 6.11-6.27 (t, 4H, 2CH=CH). 

Depending on the nucleophilicity of the alkene, the reaction takes less than 2h with 6 and - 

up to several days with unactivated alkenes 2-5. The structure of the cyclobutylideneacetate -- 

products was corroborated by 'H NMR, 13C NMR and IR spectroscopy (Table 2). (E)- and (Z)- 

isomers were distinguished by GC-MS and by 'H NMR, especially in the presence of shift 

reagent. In general, the (E)-isomers which have the ethoxycarbonyl grouping in a more 

accessible position than the (Z)-isomers, had the longer GC retention times and were also 

complexed more strongly with Eu(fod)3. 

The cyclobutylideneacetates 2a-5a are formed stereoselectively (E:Z 2 9:1), whilst cyclo- -- 
adduct 6a is formed regioselectively. Cyclopentadiene (L) and allenic ester 1 react to give - 
the expected Diels Alder adduct 5, also in the presence of A1C13. No four-membered adduct was 

detected. Thus, I-A1C13 behaves as a conventional, but strongly activated dienophile towards 

7, and only the nonterminal double bond reacts. I-A1C13 is also more endo-selective than 

uncomplexed ethyl 2,3-butadienoate (1) (cf. Table I). 

Finally, the A1C13-promoted annelation of cycloalkenes with allenic esters serves as a 

convenient alternative to the three-step sequence: 1)Dichloroketene cycloaddition 2)Reductive 

removal of halogen 

readily accessible 

butylideneacetates 

and 3)Carbonyl olefination (Scheme 2). As allenic esters such as 1 are now - 
6 

by the Wittig reaction , the one-pot annelation of cycloalkenes to cyclo- 

should be of preparative interest. 

Scheme 2. Three-step annelation of cycloalkenes to cyclobutylideneacetic esters. 
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